Step of Proof: branch_wf2
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
branch
wf2
:
P
:
,
d
:Dec(
P
),
T
:Type,
A
:(
P
T
),
B
:(
q
:
P
.
T
). if
p
:
P
then
A
(
p
) else
B
fi
T
latex
by ((Unfold `branch` ( 0)
)
CollapseTHEN (Auto
))
latex
Co
1
: .....subterm..... T:t1:n
Co1:
1.
P
:
Co1:
2.
d
: Dec(
P
)
Co1:
3.
T
: Type
Co1:
4.
P
T
Co1:
5.
q
:
P
.
T
Co1:
d
(
P
+ (
P
))
Co
2
: .....subterm..... T:t3:n
Co2:
1.
P
:
Co2:
2.
d
: Dec(
P
)
Co2:
3.
T
: Type
Co2:
4.
P
T
Co2:
5.
B
:
q
:
P
.
T
Co2:
6.
x
:
P
Co2:
7.
d
= (inr
x
)
Co2:
B
T
Co
.
Definitions
if
p
:
P
then
A
(
p
) else
B
fi
,
Type
,
case
b
of inl(
x
) =>
s
(
x
) | inr(
y
) =>
t
(
y
)
,
False
,
P
Q
,
Void
,
left
+
right
,
Dec(
P
)
,
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
t
T
,
x
:
A
.
B
(
x
)
,
A
origin